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A direct numerical simulation of the incompressible Navier–Stokes equations of the
flow over a bump shows a stationary longitudinal instability at a Reynolds number of
Re =400. A three-dimensional global mode linear analysis is used to interpret these
results and shows that the most unstable eigenmode is steady and localized in the
recirculation bubble, with spanwise wavelength of approximately ten bump heights.
An inviscid geometrical optics analysis along closed streamlines is then proposed and
modified to account for viscous effects. This motivates a final discussion regarding the
physical origin of the observed instability.

1. Introduction
Detached laminar boundary layers occur in many engineering applications and are

known to induce efficiency losses, such as drag increase and lift loss on airfoils at
high angles of attack. The initial approach followed in the study of the destabilization
of laminar separating flows was restricted to a two-dimensional setting. For the
archetypal flow over a backward facing step, oscillations are triggered beyond a
certain critical Reynolds number Rec. The physical mechanisms at the origin of these
oscillations are only partially understood. Kaiktsis, Karniadakis & Orszag (1996) first
suggested to a noise amplifier behaviour, reminiscent of convective instabilities. The
presence of a finite region of absolute instability was then thought to play a role in
boundary layer flows with adverse pressure gradient (Hammond & Redekopp 1998).
This interpretation has recently been corroborated by the study of Marquillie &
Ehrenstein (2003) on laminar separated bubbles generated over various smooth
bumps. However, the exact role of topological changes in the base flow structure
as put forward by Theofilis, Hein & Dallmann (2000), which may even lead to the
disappearance of the steady nonlinear global equilibrium state of the Navier–Stokes
equations, is not understood.

Coming back to the flow over a backward facing step and allowing for three-
dimensional flow development, the experiments by Armaly et al. (1983) and numerical
simulations by Kaiktsis, Karniadakis & Orszag (1991) and more recently Williams &
Baker (1997) concluded that there was a strong influence of sidewalls. In the absence
of sidewalls the recent numerical stability analysis of Barkley, Gomes & Henderson
(2002) as well as the experimental studies of Beaudoin et al. (2004) have revealed that
a primary longitudinal steady instability first takes place when the Reynolds number
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Figure 1. Streamlines of the two-dimensional base state at Re = 400.

exceeds a threshold Reynolds number Re3D below Rec. These authors have deduced
from a qualitative inspection of the two-dimensional base state that the physical
mechanism leading to the formation of these longitudinal structures is an instability
of centrifugal type and they have identified the destabilizing regions of the flow.

The goal of the present study is to analyse this three-dimensional instability in
the case of the flow over a bump sketched in figure 1, in the absence of sidewalls.
The study combines three different approaches: a three-dimensional direct numerical
simulation (DNS), a global stability analysis and an inviscid geometrical optics
analysis along closed streamlines. This method, which was first developed for the study
of the elliptic instability of vortices (Bayly 1986) and then applied to hyperbolic and
centrifugal instabilities (Bayly 1988; Lifshitz & Hameiri 1991; Sipp & Jacquin 1998),
is borrowed from the stability analysis of Euler nonlinear equilibrium states. Note
that the numerical complexity decreases for each of these steps, the most prohibitive
being the three-dimensional DNS, which has led us to limit the scope of the paper
to a single bump geometry.

The outline of the paper is as follows: § 2 is devoted to the two-dimensional base
flow and three-dimensional numerical simulation. The results are then compared in
§ 3 to a global mode stability analysis. In § 4, we show that the physical mechanisms at
the origin of this instability can be understood by considering the inviscid geometrical
optics stability analysis along closed streamlines. A conclusion section closes the paper.

2. Direct numerical simulation
At the domain entrance at x =0 a Blasius profile is imposed, non-dimensionalized

such that the outer velocity at y = ∞ is U = 1 and that the displacement thickness
associated with the local Blasius boundary layer profile is δ(x = 0) = δ0 = 1. The bump
geometry b(x) is given in Marquillie & Ehrenstein (2003): its height is taken to
be h = 2 and the bump is located between x = 15 and x = 37 with the summit at
x = 25. The Reynolds number is taken as Re = Uδ0/ν = 400 (ν being the kinematic
viscosity) such that Re3D < Re <Rec (Rec = 600 for the onset of oscillations according
to Marquillie & Ehrenstein 2003). At this Reynolds number, a long recirculation zone
develops that links the detachment point D at x ∼ 28 to the reattachment point R at
x ∼ 100. The bump and the recirculation zone are represented in figure 1.

The algorithm used is a generalization of the two-dimensional numerical simulation
procedure detailed in Marquillie & Ehrenstein (2002). The bump geometry y = b(x) is
taken into account by using an algebraic mapping onto a Cartesian grid. The three-
dimensional Navier–Stokes equations are then discretized using fourth-order finite
differences in the streamwise x direction with Nx = 1024 equidistant grid points for a
domain length of Lx = 200, whereas a pseudo-spectral Chebyshev collocation method
is used in the normal y-direction with Ny = 97 covering the region [0, Ly = 100] after
a suitable coordinate transform from the Gauss–Lobatto points in [−π, π]. Along
the transverse direction −Lz < z <Lz, the flow is assumed periodic of period 2Lz,
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calling for a spectral Fourier expansion along the transverse coordinate with Nz =64
modes. The three-dimensional system largely uncouples into Nz two-dimensional
subsystems analogous to the two-dimensional system studied in detail by Marquillie
& Ehrenstein (2002), though nonlinear coupling terms linking the different Fourier
modes appear. They involve convolution products which are classically evaluated in
physical space using fast Fourier transforms (FFTs). The conventional de-aliasing
technique with M � 3Nz/2 effective transverse Fourier modes is used. This type of
algorithm is suitable for parallelization, which has been implemented with up to 8
processors on the NEC SX5 at IDRIS (French National Computer Center), yielding
a final 40 GFlops performance.

Second-order backward Euler differencing is used in time: the Cartesian part of
the diffusion term is taken implicitly whereas the nonlinear and metric terms are
evaluated using an explicit second-order Adams–Bashworth scheme. In order to
ensure a divergence-free velocity field, a fractional step method is used, adding to
each prediction step a suitable projection step.

As already mentioned, a Blasius profile is prescribed at the inlet, whereas at outflow
the classical advection condition

∂U
∂t

+ Uc

∂U
∂x

= 0 with Uc =
1

y∗

∫ y∗

0

u(Lx, y) dy (2.1)

is taken. The upper bound y∗ in the integral is time-dependent during the transient un-
steady flow regime; its value is such that U (Lx, y

∗) ∼ 0.5. A no-slip boundary condition
is imposed on the wall whereas at y = b(x) + 100 mixed Dirichlet–Neuman boundary
conditions have been retained:

∂u

∂y
= 0, v = 0, w = 0. (2.2)

We have not attempted a systematic study of the influence of the imposed trans-
verse period nor to a precise determination of Re3D for reasons related to the comput-
ational cost of these time-consuming three-dimensional unsteady Navier–Stokes
computations.

The simulation is initiated with the two-dimensional equilibrium state, to which a
small transverse perturbation is added. In the present example for Lz = π/0.125, the
chosen box width allows the evolution of wavenumbers as low as β1 = 0.125 and its
harmonics βn = 0.125n. This Lz value has been inferred from the linear instability
results to be discussed in § 3. The initial Gaussian divergence-free perturbation of U

and V consists of the superposition of modes 1 to 4 with equal maximal amplitudes
of 5 × 10−4 on U and 10−8 on V .

Since Re >Re3D , the perturbation grows but the growth factors are so weak that
saturation cannot be reached within a reasonable computational time. This evolution
is monitored by decomposing the transverse velocity field into its Fourier compo-
nents W (x, y, z) =

∑
Wn(x, y) sin(βnz) and their amplitudes Wn = max(|Wn(x, y)|).

Figure 2(a) displays the evolution of the Wn, n =1 . . . 5, on a logarithmic scale in
the time interval 1000 < t < 1400. The exponential growth of modes 1 to 4 as well the
exponential decay of mode 5 are clearly shown, mode 2 displaying the highest growth
rate. One may take advantage of the rigorous exponential growth and decay of the
modes to extract growth rates that will be compared to their counterparts calculated
by the global stability analysis results in § 3.

The extremely slow development of the structure makes it nearly intractable within
a reasonable computational time. A similar slowness has been encountered in the
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Figure 2. (a) Evolution of the maximum absolute transverse velocity Wn = max(|Wn(x, y)|)
for modes n= 1 . . . 5 on a logarithmic scale between times t = 1000 and t =1400. These modes
correspond to wavelengths βn = 0.125n and the growth rates extracted from this figure are
reported in figure 4. (b) Evolution at later times t = 3000 to t =13 000 with only 16 Fourier
modes. At time t = 14 000, the effect of the spanwise truncation becomes important and erratic
flow oscillations set in.

experiments of Beaudoin et al. (2004). Based on a linear extrapolation and on a
simplified amplitude equation, we have estimated the time necessary for the most
unstable mode β2 = 0.25 to dominate the flow (t =6000 approximately) as well as the
time required for nonlinear terms to become significant (t =10 000 approximately) and
both are far beyond any reasonable computational effort, even on the fast NEC-SX5
computer at IDRIS. These estimations have been confirmed by running a similar
DNS but truncating the Fourier expansion in the spanwise direction and keeping
only 16 modes. This calculation, reported in figure 2(b), shows that the flow smoothly
enters the nonlinear regime through the route predicted by the linear stability analysis.
However, because of the setting in of erratic oscillations, no reasonable interpretation
is possible beyond t = 13 000. Indeed, in order to get reliable results for later times,
one should significantly increase the Fourier expansion, which is beyond the scope of
the present analysis.

Figure 3 represents the isocontours of the transverse component W (x, y, z) at time
t = 1000 at Re = 400 and Lz = π/0.125. Figure 3(a) is an (x, z)-cut at y = 2 and
displays a structure resulting from the superposition of modes 1 to 4 displayed in
figure 3(b–e). The use of the same grey scale on these four subfigures enables one to
compare the relative amplitudes of the various modes in accordance with figure 2.
Figure 3(f ), which represents the flow structure of mode 2 in an (x, y)-cut at z = Lz/4,
demonstrates that the structure is contained in the recirculation zone and has two
amplitude peaks: one that is particularly intense in the vicinity of the detachment
point D and another that spreads out in the downstream part of the recirculation zone.

3. Global modes
In order to interpret the formation of longitudinal structures in the flow, a global

stability study is conducted. In contrast to local stability analyses where the stability of
the base flow is analysed under the weakly non-parallel assumption, two-dimensional
temporal eigenmodes are determined in the global stability setting, allowing for
strong non-parallel base flows, such as the one encountered in the wake of the bump.
The Navier–Stokes equations are linearized around the two-dimensional base state
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Figure 3. Transverse velocity component W (x, y, z) of the flow and its harmonic components
at time t = 1000, Re = 400 for Lz = π/0.125: (a) (x, z)-cut at y =2; only half of the spanwise
domain is shown, from 0 to Lz; (b–e) (x, z)-cut at y = 2 of its harmonic components
Wn(x, y = 2)sin(βnz) (the same grey scale is used on (b–e) to ease comparison); (f ) mode
n= 2 component W2(x, y) in the (x, y)-plane at z = Lz/4.

U = (U (x, y), V (x, y), 0), obtained numerically as a steady state of the simulation
of the two-dimensional Navier–Stokes equations, and the three-dimensional flow
perturbation is the solution of

∂u
∂t

= −(U · ∇)u − (u · ∇)U − ∇p +
1

Re
∇2 u, (3.1)

∇ · u = 0, (3.2)
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where u = (u, v, w) and p are the velocity and pressure perturbations. Equations (3.1)
and (3.2) are solved for the temporal global two-dimensional modes

[u(x, y, z, t), p(x, y, z, t)] = [û(x, y), p̂(x, y)]eσ t+iβz (3.3)

with suitable boundary conditions for the three velocity components. Dirichlet
boundary conditions are prescribed on the solid wall (y = b(x)) and at infinity
(y = ymax), as well as at the inlet (x = 0). Neumann boundary conditions are imposed
at the outlet (x =L).

The type of discretization used to recover the base state by solving the Navier–
Stokes equations is not suitable for solving the stability system since, as will become
clear below, our strategy to determine the most unstable global modes requires the
solution of linear systems involving the stability matrix of size 4 × Nx × Ny . The
base flow U extracted from the 2D numerical simulation, as well as its derivatives,
are therefore first interpolated onto a Chebyshev–Chebyshev collocation grid in the
directions x and y with nx = 160 and ny = 35, yielding a matrix approximately of size
∼ 25 000. We have checked that the significant eigenvalues do not change by more
than 0.2 % on increasing the resolution to nx = 180 and ny = 45.

The pressure boundary conditions are given implicitly through the incompressibility
condition which is imposed in the interior of the domain as well as on the boundary.
Once the four corner points are eliminated, one obtains exactly the same number of
unknowns as equations and is left with the following generalized eigenvalue problem
after discretization:

Av = σBv, (3.4)

the vector v containing the disturbance flow velocity and pressure. Despite
the interpolation procedure, the generalized eigenvalue problem obtained after
interpolation is still too large to be solved directly. A Krylov subspace projection
method using a shift-and-invert strategy provides a way to recover the most significant
eigenvalues (details may be found in Ehrenstein & Gallaire 2005). For each value of
β , the calculation takes about 2 h CPU on the NEC/SX5 of IDRIS.

Figure 4, obtained upon repeating this procedure for various values of β , depicts
the evolution of the maximum growth rate as a function of the wavenumber β .
Note that in the present calculations, at most one unstable mode has been obtained,
other modes being damped. In accordance with the three-dimensional numerical
simulations, the structure is stationary (σi = 0). Figure 4 also shows that the most
unstable wavenumber at Re = 400 is βmax =0.25 whereas the cut-off approximately
equals βc =0.58. The growth rates extracted from the DNS, depicted by ×, are
also plotted in figure 4 and compare very favourably with the global eigenvalues,
justifying a posteriori the choice of Lz = π/0.125 as suitable to sustain the highest
possible growth at β2 = 0.25. Figure 5 represents the most unstable mode structure
at βmax =0.25. The comparison with the snapshot of second harmonic W2(x, y) at
β2 = 0.25 displayed in figure 3(f ) obtained by time evolution of the three-dimensional
DNS in the preceding section is particularly striking.

4. Local criteria
In this section, we tentatively apply the tools of the inviscid short-wave asymptotic

stability analysis to the description of the instability developing, in the presence of
viscosity, on a steady equilibrium state satisfying the Navier–Stokes equations. The
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Figure 4. Growth rate (◦) and frequency (�) of the most unstable global mode as a function
of the transverse wavenumber β . Growth rates extracted from the DNS are also shown (×).
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Figure 5. Transverse velocity component ŵ of the most unstable global mode at
Re = 400 corresponding to βmax =0.25.

so-called geometric optics (or WKB) method is first recalled and applied to the closed
streamlines in the recirculation bubble. Ad hoc terms accounting for the viscosity and
finite wavenumber are then proposed in the next subsection. The viscosity introduces
two main differences. First, the base flow is no longer a steady solution of the
Euler equations and for instance the property that the vorticity remains constant
on a streamline is not satisfied. Secondly, the viscosity plays a damping role in the
perturbation amplitude evolution. Landman & Saffman (1987) have shown how to
take into account this influence of the viscosity.

4.1. Centrifugal instability mechanism

Sipp & Jacquin (2000) have derived a sufficient criterion for centrifugal instability in
the inviscid and short-wave limit: the flow is unstable if there exists a streamline ψ0

such that for any point r0 belonging to the streamline the Rayleigh discriminant is
negative, that is

∆(r0) = 2|U |Ω/R(r0) < 0, (4.1)

over the whole streamline, where |U | is the velocity modulus, Ω = ∂V /∂x − ∂U/∂y

the vorticity and R the local algebraic curvature radius

R =
|U |3

(∇ψ) · [U · ∇U]
. (4.2)

In expression (4.2) the usual streamfunction ψ has been introduced. In a way
analogous to Beaudoin et al. (2004) but in contrast to Barkley et al. (2002), here
the local Rayleigh discriminant is calculated using the local curvature radius R and



228 F. Gallaire, M. Marquillie and U. Ehrenstein

20 40 60 80 100
0

1

2

3

x

y
C

R

D

0246

8

10

12

14

161820

I

II

III
IV

Figure 6. Isovalues of the growth rate predicted by WKB analysis along the streamlines are
represented in grey levels. The most unstable streamline is represented by a dashed line and
the time instants, with ti = i × 100, i = 0, 2, . . . 20 at which the various points on the streamline
are attained are indexed by their circled value. Isocontours of the Rayleigh discriminant are
also shown, for values ranging from −0.02 to −0.002 in regions I and II and from −0.0002 to
−0.000002 in regions III and IV.

not the distance to the centre C of the recirculation zone. In cylindrical geometry, the
quantity ∆(r0) corresponds to the discriminant introduced by Rayleigh to distinguish
centrifugally stable from unstable flows. Rayleigh’s initial argument (Rayleigh 1916)
was a necessary condition for instability, but Synge (1933) has proved that it is
also a sufficient condition for centrifugal instability. Bayly (1988) generalized the
latter argument to more general streamlines, i.e. convex streamlines where the square
of the circulation decreases everywhere, and then Sipp & Jacquin (2000) obtained
criterion (4.1).

Negative isocontours of the Rayleigh discriminant are represented in figure 6
where the separatrix linking the detachment point D to the reattachment point R

and containing all the closed streamlines can be identified bordering the grey zone.
Note that the aspect ratio is different from figures 1, 3 and 5. Circled points are
drawn on the streamline depicted in figure 6, labelled i = 0, 2, . . . , 20 such that the
absolute time values at these points are ti = i × 100 when following a particle on its
trajectory. This gives an idea of the velocity intensity along the streamline. There exist
different regions of the flow where the Rayleigh determinant is negative: a strong
region (I) in the upstream and concave region of the bump, region (II) just preceding
the detachment, weak regions (III) and (IV) in the recirculation zone and a last region
(V) (not shown) downstream of the recirculation zone. There is no closed streamline
along which the local Rayleigh discriminant remains negative and criterion (4.1) is
not satisfied. However, particles following closed streamlines inside the recirculation
zone pass every period through regions where they feel the centrifugal instability.
Keeping in mind that (4.1) is only a sufficient condition for instability, the aim of § 4.2
is to analyse if this partial gain is sufficient to trigger the global instability revealed in
§ 3 by our global mode analysis. As noticed by Beaudoin et al. (2004) in the case of
the backward facing step, the most unstable region upstream of the bump is naturally
associated with a Görtler instability. However, the Görtler instability is a convective
instability which is not observed in the 3D numerical simulations of § 2 in the absence
of external noise, nor in global mode calculations of § 3.
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4.2. WKB method along streamlines

In the so-called geometric optics method (or WKB method), the perturbation velocity
and pressure are sought of the form

[u, p] = [a(t), b(t)]eik(t)x(t). (4.3)

Following Bayly (1988), this enables one to evaluate a growth rate associated with any
closed streamline in the limit of zero viscosity and large wavenumber k by integrating
the following set of equations:

dx
dt

= U(x(t)), (4.4)

dk
dt

= −LT (x(t))k, (4.5)

da
dt

=

(
2k(t)k(t)T

|k(t)|2 − I

)
L(x(t))a, (4.6)

where L(x(t)) is the velocity-gradient matrix ∇U at position x(t) attained at time t . The
first equation simply restates that the (two-dimensional) position of the particle along
the trajectory x(t) remains tangent to the velocity vector U(x(t)). The second and third
equations describe respectively the evolution of the three-dimensional wavenumber
k(t) and perturbation amplitude a(t) along the streamline as time evolves. Three
initial conditions should be added:

x(t = 0) = x0, k(t = 0) = k0, a(t = 0) = a0, (4.7)

where the first condition imposes the Lagrangian origin x0 of the streamline and
thereby entirely identifies the streamline.

Since the third column of L and thereby the third line of LT are zero, the transverse
component kz = β of k remains constant as time evolves. In contrast, the in-plane
components evolve under the action of the deformation tensor. Bayly (1988), Sipp &
Jacquin (1998) and Lifshitz & Hameiri (1991) have however shown that centrifugal
and hyperbolic instabilities do attain their maximum growth rate for purely transverse
wavenumbers, sometimes called pressureless modes (see also Leblanc & Godeferd
1999; Godeferd, Cambon & Leblanc 2001). In the light of the structures found in
the previous sections by DNS and global mode analysis, we adopt the hypothesis
k0 = β0ez yielding k(t) = β0ez. With this assumption, (4.6) becomes

da
dt

= L̃(x(t))a, (4.8)

where

L̃ =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ L.

As a consequence of the periodic nature of the flow along closed streamlines,
equation (4.8) is studied using Floquet theory over one period T (x0):

dA

dt
= L̃(x(t))A with A(t = 0) = Id. (4.9)

The growth rate is then obtained by calculating the Floquet exponents associated with
the eigenvalues λ1(x0), λ2(x0) and λ3(x0) and associated eigenvectors a1(x0), a2(x0) and
a3(x0) of the 3 × 3 matrix A(T (x0)). Equation (4.8) readily leads to λ3 = 1 and a3 = ez
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Figure 7. Growth rate (∗) and frequency (◦) of the WKB mode as a function of the stream-
line labelled by the abscissa y0 along the segment represented in figure 6 as a dashed line.

and we further adopt the convention |λ1| � |λ2|. Since the trace of L is always zero (and
hence Tr(L̃) = 0) as a consequence of the divergence-free nature of the base flow, the
determinant of A(T ) is unity (det(A(T )) = 1) as a consequence of the Liouville theorem,
yielding λ2 = 1/λ1. The maximum growth rate is then evaluated by considering the
real part of

σ1(x0) = log(λ1(x0))/T (x0). (4.10)

Note that for any Lagrangian origin x0 belonging to the streamline ψ0, σ1(x0) ≡
σ1(ψ0).

Equation (4.9) together with (4.4) are integrated via a fourth-order Runge–Kutta
method for Lagrangian origins on several streamlines. The corresponding real and
imaginary parts of σ1(ψ0) are reported in figure 7 where each streamline ψ0 is
labelled by the ordinate y0 of the intersection point with the line depicted in figure 6
parallel to the y-axis from the center C = (62, 1.54) to the wall. As a complement, the
intensity of the growth rate associated with each closed streamline is also reported
in figure 6 using a grey scale. The maximum growth rate is stationary (Im(σ ) = 0),
in agreement with the numerical simulation and global instability analysis and it is
obtained for the streamline shown in figure 6 and corresponding to y0 = ymax = 0.2 in
figure 7.

These results seem to indicate that the global net budget through centrifugally
unstable (∆ < 0) and stable regions (∆ > 0) is positive. Since the stable regions have
no damping property however (

√
−∆ being purely imaginary), this simplified way

of reasoning from a scalar viewpoint is clearly not relevant: it would lead to an
erroneous sufficient criterion for instability requiring only that there exits some r0

belonging to the streamline ψ0 where ∆(r0) < 0. In reality the dynamics cannot be
reduced to a scalar equation and the observed instability results from a detailed
balance of transient growth and transient decrease periods, directly exploiting the
time-dependent operator non-normality (see Farrell & Ioannou 1996, for details)
ensured by the two degrees of freedom of the system.

4.3. Towards a quantitative comparison

The previous subsection has clearly shown that the inviscid WKB analysis at large
wavenumber enables one to detect a stationary instability which is in qualitative
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agreement with the global mode analysis. In contrast, there is no quantitative
agreement between the growth rate predicted in the large-wavenumber asymptotic
limit β → ∞ and Re → ∞ (σ∞ ∼ 5 × 10−3) and the growth rate measured in the global
mode analysis at Re = 400 and β = 0.3 =O(1) (σ ∼ 8 × 10−4). Note however that the
reference length scale used to measure β is the displacement thickness, which is at
least two orders of magnitude smaller than the streamline length representative of
the physically relevant length scale. The effective wavenumber, once scaled with the
streamline length, should therefore also be larger by two orders of magnitude giving
some validity to our attempt to reach β = 0.3 via the large-wavenumber asymptotic
limit.

Landman & Saffman (1987) have discussed how to introduce a term accounting for
the viscous time. Formally, equations similar to (4.4)–(4.6) starting from the Navier–
Stokes and not the Euler equations can be derived. Equations (4.4) and (4.5) remain
unchanged and equation (4.8) should be replaced by

da
dt

=

(
L̃ − β2

Re

)
a, (4.11)

which leads to the viscous corrected growth rate

σvis = σ∞ − β2

Re
. (4.12)

Bayly (1988) and Sipp & Jacquin (1998) have demonstrated that it is possible
to build an inviscid global mode of finite wavenumber β in the vicinity of the
most unstable streamline ψmax if (4.1) holds. The rigorous derivation and asymptotic
resolution of the boundary layer equations concentrated around ψmax make explicit
use of property (4.1) and reveal that the first-order correction term including finite-β
effects is a term of order −A/β accounting for the asymptotically small spreading
of the unstable mode. A similar correction term can only be inferred here (as done
for instance by Sipp, Lauga & Jacquin 1999, regarding hyperbolic and even elliptic
instabilities) and enables one to suggest the following composite estimation:

σ = σ∞ − β2

Re
− A

β
, (4.13)

which strictly makes sense only if ARe =O(β3). In this way of reasoning, one neglects
the influence of the viscosity in the mode structure, i.e. one expects A not to depend
on Re. Equation (4.13) may now be used to derive scaling laws for the maximum
growth rate σmax and wavenumber βmax:

βmax =

(
ARe

2

)1/3

(4.14)

σmax = σ∞ −
(
21/3 + 2−2/3

) (
A2

Re

)1/3

. (4.15)

It is interesting to note that at βmax , the viscous correction and finite-β terms are
of the same order, guaranteeing that ReA = O(β3), thereby justifying the composite
estimation (4.13).

The global mode stability analysis of § 3 can be used to check this scaling law. This
method is perfectly suited to decoupling the Reynolds number acting as the control
parameter determining the steady base flow topology from the Reynolds number gov-
erning the perturbation evolution, as required in the above derivation. Three numerical
experiments where the viscosity is changed in the stability equations (but not in the
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Figure 8. (a) Maximal growth rate σmax (◦) as computed from the global stability analysis at
various Reynolds numbers Re as a function of Re−1/3. The inviscid asymptotic growth rate σ∞
is also shown (×). (b) Wavenumber βmax (◦) at maximal growth rate as a function of Re1/3.

base state) were conducted, at Re =200, Re = 800 and Re = 1600, in a similar way to
§ 3. Higher Reynolds numbers showed unstable modes associated with the shear layer
instability which were no longer localized in the recirculation zone. The corresponding
maximal numerical growth rates are reported in figure 8(a) as a function of Re−1/3. The
four test cases fall on the same line σ = σ0 − σ1Re−1/3 with σ0 ∼ 0.06 close to σ∞. The
quality of the collapse suggests that A does not depend on Re, giving some support to
the hypothesis that viscous corrections in the construction of the eigenmode may be
neglected. Note however that the scaling law (4.14) is not followed by βmax (figure 8b).
We conclude that the geometric optics method designed for short long-wave inviscid
instabilities, once suitably amended by viscous and finite wavenumber correction
terms, hence provides a quantitatively correct estimate of the growth rate at the origin
of the three-dimensional transverse instability taking place in the recirculation zone.

5. Conclusion
We have conducted a three-dimensional numerical study of a detached boundary

layer over a bump at Re = 400 and a global mode analysis based upon a
two-dimensional base state. The comparison of the two stationary perturbed three-
dimensional flow state structures is remarkable. In particular, it has been proved
that no other instability mechanisms set in during the numerical simulation apart
from those predicted by the global stability analysis. The local WKB analysis in the
inviscid and short-wave limit shows that it is possible to identify closed streamlines
along which the integrated growth rate is positive, although the particles cross
inactive regions of the flow, as a consequence of a rather subtle parametric instability
involving the periodic time evolution of the velocity-gradient tensor of the base flow
along closed streamlines. This provides a reassessment of the inviscid nature of the
present stationary longitudinal instability which has been suggested by Barkley et al.
(2002) and Beaudoin et al. (2004), without however fully justifying its ‘centrifugal’
origins. A composite estimation of the growth rate taking into account the short-wave
inviscid asymptotic limit as well as a viscous damping term and a finite wavenumber
correction has been shown to compare favourably with the global mode analysis.
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